THE COMBINATION OF PULSED DYE AND NEODIUM YAG LASERS IN TREATMENT OF NODULAR AND THICK PORT-WINE STAINS
Ashraf Badawi, Abeer Atteya, Manal Salah, Nevine Samy, Maha Rafi
Laser Institute, Cairo University, Egypt

Background and Objectives: Portwine stains respond quite well to conventional pulsed-dye laser treatment, but often the clearance is difficult to be achieved in thick or nodular lesions. The new Cynergy laser is capable of delivering 585 and 1064 nm simultaneously in the same pulse with short medium or long delay. The pulse-duration of both the wavelengths can be adjusted according to the size of the blood vessels of the lesion. This study was undertaken to determine if the combination of both the wavelengths could improve thick or nodular port-wine stains that is resistant to conventional treatment.

Study Design/Materials and Methods: 20 patients with portwine stains that had failed to improve following at least two consecutive treatments with the conventional 0.5 ms, 595 nm pulsed-dye laser, as assessed by the patient and treating physician, were included in the study. These portwine stains were treated with the Cynergy laser using the Multiplex option with a multiplex interpulse delay of 100 msec. Subjects received one treatment with Pulse Dye [PDL] followed by Nd:YAG lasers with medium delay between the two pulses. Improvement was determined by blinded evaluation of photographs taken before and after final treatment.

Results: Before initiation of the study the average improvement was rated 20% and this was elevated to 70% following an average of 4 treatments with 3–4 weeks interval.

Conclusions: The combination of the Pulsed Dye Laser and the Neodinium YAG lasers improve thick or nodular portwine stains that resistant to conventional pulsed-dye laser treatment.

MULTICENTER EVALUATION OF CYNERGY MULTIPLEX LASER TREATMENT OF LEG VEINS
Robert Adrian,1 Emil Tanghetti2
1Center for Laser Surgery, Washington, DC
2Center for Dermatology and Laser Surgery, Sacramento CA

Background and Objectives: Dual, Sequential wavelength treatment with Pulse Dye [PDL] followed by Nd:YAG lasers (MultiPlex) provides effective treatment of vascular lesions, using lower treatment fluences than either device used individually. This is due to alteration of blood’s absorption characteristics by PDL. Leg veins are often resistant to laser, and exhibit higher rates of side effects. This study evaluated efficacy and side-effects of MultiPlex for treatment of leg telangiectasia.

Materials and Methods: A total of 37 patients, presenting with leg veins (0.2–1.5 mm diameter) were treated using the Cynergy laser (Cynosure, Inc). Dosing: Vessels <0.6-mm—PDL 10 msec 7–9 J/cm² Medium delay YAG 15 msec 50–70 J/cm², Vessels > 0.6-mm—PDL 40 msec 9–11 J/cm² Medium delay YAG 15 msec 50–70 J/cm² and SmartCool air cooling (Cynosure, Inc.) with fan speed of 3–6. Treatment endpoint was intravascular coagulation or vessel disappearance. If necessary, subjects received a second treatment 4–6 weeks later. Patients were evaluated 2–3 months after the final treatment. Efficacy was determined by investigators as percent lesion clearance.

Results: Treatments were well tolerated. All subjects and treated lesions exhibited at least 75% vessel clearance in one or two treatments. No subjects exhibited purpura post treatment, and there was no hyperpigmentation or scarring during follow-up.

Conclusions: The MultiPlex feature of the Cynergy laser provides very effective treatment of leg veins. This method avoids complications of laser leg vein treatments including purpura and hyperpigmentation.