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Analytical modeling of laser pulse heating of embedded biological targets:
An application to cutaneous vascular lesions
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Detailed understanding of the thermal processes in biological targets undergoing laser irradiation
continues to be a challenging problem. For example, the contemporary pulsed dye laser �PDL�
delivers a complex pulse format which presents specific challenges for theoretical understanding
and further development. Numerical methods allow for adequate description of the thermal
processes, but are lacking for clarifying the effects of the laser parameters. The purpose of this work
is to derive a simplified analytical model that can guide the development of future laser designs. A
mathematical model of heating and cooling processes in tissue is developed. Exact analytical
solutions of the model are found when applied to specific temporal and spatial profiles of heat
sources. Solutions are reduced to simple algebraic expressions. An algorithm is presented for
approximating realistic cases of laser heating of skin structures by heat sources of the type found to
have exact solutions. The simple algebraic expressions are used to provide insight into realistic laser
irradiation cases. The model is compared with experiments on purpura threshold radiant exposure
for PDL. These include data from four independent groups over a period of 20 years. Two of the
data sets are taken from previously published articles. Two more data sets were collected from two
groups of patients that were treated with two PDLs �585 and 595 nm� on normal buttocks skin.
Laser pulse durations were varied between 0.5 and 40 ms; radiant exposures were varied between
3 and 20 J /cm2. Treatment sites were evaluated 0.5, 1, and 24 hours later to determine purpuric
threshold. The analytical model is in excellent agreement with a wide range of experimental data for
purpura threshold radiant exposure. The data collected by independent research groups over the last
20 years with PDLs with wavelengths ranged from 577 to 595 nm were described accurately by this
model. The simple analytical model provides an accurate description of a wide range of
experimental data. The model can be used to guide the development of future laser designs and help
refine laser parameters. © 2006 American Institute of Physics. �DOI: 10.1063/1.2200592�
I. INTRODUCTION

Understanding the thermal processes in biological tar-
gets undergoing laser irradiation continues to be a challeng-
ing problem despite the availability and the ever-increasing
power of the numerical computational models.1–6 The high
precision of the numerical algorithms is mismatched by the
available approximate values of the tissues thermal and op-
tical properties.7,8 The benefit of analytical models of tissue
heating is that the trends produced by variations of the laser
pulse parameters can be studied without precise knowledge
of all tissue properties. A large number of analytical models
derive solutions in terms of infinite sums or integrals that can
be evaluated only numerically.9–12 Although the calculation
of these sums or integrals is relatively straightforward using
a computer, the clarity of the analytical solution is lost in the
process. The assumption that the spatial temperature profile
is proportional to the laser fluence profile at all times, has led
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to a useful time constant model with some limitations and
refinements.13–15 The introduction of specifically chosen tem-
perature profiles in the target at the end of the heating laser
pulse have resulted in straightforward theoretical models and
important insights for laser treatment of vascular targets.16–18

The next logical step to refine the understanding of the
target heating process in terms of analytical modeling is to
assume specifically chosen spatial and temporal profiles for
the heat generation function within the laser target. Pulsed
heating of spherical targets by a spatially uniform heater has
been solved analytically for a variety of applications.19,20

Pulsed heating of various target geometries by Gaussian and
�-function sources has been analyzed in Ref. 21 �Chapter
12�. The present work shows that it is possible to derive
relatively simple closed form analytical solutions of laser
pulse heating and subsequent cooling of spherical, cylindri-
cal, and planar biological targets by introducing a few sim-
plifying assumptions. Application of the analytical solutions
derived in the case of laser heating of blood vessels has
provided direction for improvement in laser design and has

led to more effective laser treatment with reduced side
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effects.22–24 The development of the model presented here
follows the general approach of representing the complex
process of biological target heating by approximate, but ana-
lytically solvable models.

The present work consists of three structural parts. Part
one describes the derivation of the analytical model and its
application to generalized spherical, cylindrical, and planar
targets. Special emphasis is placed on cylindrical targets in
the context of application of the model to the treatment of
blood vessels by pulsed dye lasers. In the second part, the
model is used to compare previously published results of dye
laser treatment of small blood vessels.17,25 The third aspect
of this work describes the performance of contemporary
pulsed dye lasers in terms of the analytical model.

II. DESCRIPTION OF THE MODEL

The detailed description of the analytical model will be
presented in Appendix A only for the case of cylindrical
targets. For the cases of planar and spherical targets, short-
ened descriptions are presented in Appendices B and C.

The thermal analysis presented here is based on a geom-
etry that assumes a cylindrical target of a radius R and infi-
nite length. The target is embedded in an infinite isotropic
medium whose thermal properties are identical to those of
the target. The target differs from the surrounding medium
by the presence of time- and space-dependent heat genera-
tion that is concentrated in the target. An example is the case
of a target containing a chromophore that results in strong
absorption of laser light incident on the target. Heating and
cooling of the target are controlled by thermal diffusion. The
heat diffusion equation including thermal generation in an
isotropic medium is given by

�T

�t
− ��2T =

h�r�,t�
�c

, �1�

where h�r� , t� is the heat generating term and T�r� , t� is the
temperature at time t and location r�. The coefficients �, �,
and c are the thermal diffusivity, density, and heat capacity of
the medium and are assumed to be identical inside and out-
side the cylindrical target. It is assumed that initially the
target is at the same temperature as the surrounding medium.
The solution of Eq. �1� can be expressed in terms of its
Green’s function g�r� , t ,r�� , t��
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where S�r�� , t��=h�r�� , t�� /�c is the source term. The Green’s
function of Eq. �1� for an infinite isotropic medium is9

g�r�,t,r��,t�� =
1

8����t − t���3/2 exp�− � �r� − r���2

4��t − t��
	
 .

It is shown in Appendices A, B, and C that the integral in Eq.
�2� can be solved analytically in a closed form for a class of

heat generation functions of the form
h�r��,t�� = Q��t�,��exp�− A
�r���2

R2 	 . �3�

The quantity Q describes the heat generation rate at the cen-
ter of the target. For a rectangular heating pulse of duration
�, depositing energy density q at the center of the target, Q is
simply Q=q /�. For such pulses, the temporal function
��t� ,�� takes the form

��t�,�� = ��t�� − ��t� − �� = �1 for 0 	 t� 	 �

0 for t� 
 �
� ,

where ��t� is the Heaviside step function. ��t� ,�� contains
the time dependence of the heating source, a rectangular-
shaped temporal pulse of duration �. The exponential term
describes the spatial distribution of the heat generation as-
sumed to have a Gaussian distribution. The free parameter A
can be adjusted to account for various degrees of confine-
ment of the heat source within the volume of the target. A
very large value of A corresponds to a very localized heating,
small values of A describe more diffuse heating.

In most practical cases of interest, there is little knowl-
edge of the heat source distribution within the volume of the
target. One common heat source is the case of laser irradia-
tion on biological targets with low to moderate absorption
embedded in a tissue environment that exhibits strong scat-
tering. This type of heat source results in nearly uniform
heating of the target and deposition of energy density u with
units of energy per volume. In this approximation, the heat
generation rate Q is chosen so that the total energy deposited
by the Gaussian heater considered in Eq. �3� is the same as
that deposited by the uniform heater described here. As will
be shown, the behavior of biological targets heated nearly
uniformly can be described adequately by the above heat
source. The expressions derived in appendices �A15�, �B5�,
and �C5� can be used to express the temporal and spatial
profiles of the temperature rise in the target. At the center of
a cylindrical, spherical, or planar target, the expressions for
the temperature rise simplify to
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where
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�x� = �x for x � 0

0 for x � 0
�

is the Macauley bracket or ramp function, and �c=R2 /4�
=d2 /16� is the characteristic time of the target. In the case of
a cylindrical or spherical target, d is the target diameter; in
the case of a planar target, d is the target thickness.

The target characteristic time �c defined here appears to
have the same form as the thermal relaxation time �r of the
target defined in Ref. 16. However, there are a number of
important differences between the two. The thermal relax-
ation time �r is defined16 as the time for an initial Gaussian-
shaped temperature distribution at the center of the target to
decay to one half of its peak value. Here the characteristic
time �c arises as a natural time scale in the solution of the
thermal diffusion equation and it is not associated with a
specified temperature rise or decay. Although the character-
istic time �c is identical for a cylindrical, spherical, or planar
target with characteristic dimension d, their heating and cool-
ing is described by different temporal functions �4�–�6�, and
there is no assumption of an initial spatial Gaussian tempera-
ture profile. Instead of assuming an initial spatial temperature
profile, the analysis presented here assumes heat sources
with Gaussian spatial profiles.

To complete the description of the approximate Gaussian
heat source, the adjustable parameter A must be specified.
One convenient choice for the adjustable parameter A is to
set it so that the energy deposited by an infinitely short pulse,
in any of the three target geometries, will result in nearly the
same temperature rise at the center of the target. In the limit
of infinitely short pulses, the expressions �4�–�6� reduce to
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u
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A , �7�
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2
��
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When the same energy density u is deposited in all three
targets and the thermal properties �c are identical, the instan-
taneous temperature rise becomes a function of the adjust-
able parameter A. The normalized temperature rise for the
three types of targets are plotted in Fig. 1. Ideally the value
of the adjustable parameter A would be chosen so that the
temperature rises in the three target geometries are the same.
However, the plots on Fig. 1 show that is not possible. A
temperature discrepancy function can be defined taking the
sum of the squared temperature rise differences for each pair

of the three types of targets
Dis�A� =
u

�c��A −
4

3��
A3/2	2

+ �A −
2

��
A1/2	2

+ � 2
��

A1/2 −
4

3��
A3/2	2
 �10�

The discrepancy function is plotted also in Fig. 1. The mini-
mum of the discrepancy function can be found by taking its
derivative and solving the resulting fourth order equation for
�A. The two real solutions for A are 0.49 and 1.48, corre-
sponding to the local maximum and minimum. The value
A=1.48 minimizes the discrepancy function and that value
will be used in the rest of this paper. In general, the choice of
an A value would depend on the presence of multiple targets
with more than one target geometry. In particular, if there are
competing targets with only two different geometries, it
would be possible to choose an A value that makes the in-
stantaneous temperature rises identical. However, a fixed
value for A for any combination of competing target geom-
etries allows direct comparison of results from different
models and that is the approach chosen here.

The Gaussian spatial profile of the heat generating func-
tion used here is only an approximation for the actual heat
generating profile. A heat generating function peaked in the
center of the target would be suitable for a target with a
relatively low to moderate absorption coefficient. For highly
absorbing targets where most of the light absorption occurs
near the periphery of the target, a more suitable heat gener-
ating function would be of the Gauss-Hermit type

h2�r��,t�� = Q����
r�2

R2 exp�− A2
r�2

R2 	 . �11�

The analytical solution of the Green’s function integral
�2� for the heat generating function h2 in cylindrical geom-
etry is outlined in Appendix D.

In principle, the actual heat generating profile can be
calculated numerically in a three-dimensional �3D� Monte
Carlo program for light propagation. The calculated heat
generating profile could then be expanded in terms of Gauss-
Hermitian functions of the type �3�, �11�, and higher order.
The resulting analytical solution would be a superposition of

FIG. 1. Peak temperature rises at the center of the three types of targets
produced by an infinitely short pulse, Eqs. �7�–�10�.
the solutions for the individual terms. However, in many
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cases, the solutions obtained from the lowest order terms �3�
and �11� are sufficient to analyze the laser pulse heating of
the target. Only heat generating functions of the type �3� will
be used in the present work and model calculations will be
compared with experimental data.

III. SINGLE LASER PULSE HEATING OF EMBEDDED
TARGETS

Equations �4�–�6� can be used to illustrate laser pulse
heating and subsequent cooling of individual targets. Figure
2 shows the normalized temperature rise at the center of a
target plotted versus normalized time t /�c for each of the
three target geometries. It is assumed that for all targets, the
characteristic size R is the same and therefore �c is the same.
In this example, the laser pulse duration is set to be �=�c.
The temperature rise is normalized for each target type so
that at the end of the laser pulse, the temperature rise is equal
to 1. This temperature normalization means that the energy
density u is different for each target type. The figure shows
that during the heating phase t /�c	1, the three target types
have very similar temporal behavior. However, during the
cooling phase t /�c
1 the center of the planar target cools
more slowly than the center of the cylindrical target, which
in turn cools more slowly than the center of the spherical
target. Only the center of the spherical target exhibits a
nearly exponential cooling rate of 1 /e in one characteristic
time period. In the subsequent time periods, the cooling of
the spherical target slows down and the temperature does not
reach 1/e2 in two characteristic time periods. The plots in
Fig. 2 illustrate the differences between the common simpli-
fied assumption of exponential relaxation cooling and the
more precise analysis presented here.

In many practical applications, it is of interest to know
the peak temperature rise that can be expected in a target
when the laser pulse duration is varied. Specifically, it is
possible to compare the peak temperature rise of competing
biological targets heated by the same laser pulse, for ex-
ample, cylindrical blood vessels and planar epidermis. Equa-
tions �4�–�6� can be used to derive the peak temperature rise
at the center of the target at the end of a laser pulse of

FIG. 2. Evolution of the temperature rise at the center of the three types of
targets, Eqs. �4�–�6�.
duration � , t=�,
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The normalized temperature rise at the center of each
target is plotted in Fig. 3 versus normalized laser pulse du-
ration � /�c. For all targets, the �c is the same. The tempera-
ture rise is normalized for each target type so that when the
laser pulse duration is equal to the characteristic time, �=�c,
the temperature rise is equal to 1. The plots on Fig. 3 show
that the present model leads to finite temperature rise even
for infinitely short pulses. The magnitude of the temperature
rise produced by an infinitely short pulse is calculated using
equations �7�–�9�. The variation of the pulse duration has the
largest effect on the peak temperature rise for the case of a
spherical target and the least effect for the case of a planar
target geometry. For a planar target, the laser pulse duration
� has to be more than ten times longer than �c if the peak
temperature in the target is to be kept to less than 1/2 of its
value when �=�c.

IV. HEATING OF EMBEDDED CYLINDRICAL TARGETS
BY COMPOUND LASER PULSES

Laser systems used to heat biological targets often emit
pulse sequences of individual subpulses each of duration �s

grouped into a compound heating pulse of total duration �p.
The formalism developed in this work can be expanded to
include target heating by such compound pulses. Only the
case of compound pulse heating of cylindrical targets will be
discussed here. The formulas for the heating of planar and

FIG. 3. Peak temperature rise at the end of the laser pulse at the center of
the three types of targets, Eqs. �12�–�14�.
spherical targets can be derived in a similar fashion.
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The temporal profile of a compound pulse of duration �p

consisting of n identical individual subpulses each of dura-
tion �s can be described by the function

�n�t�,�s,�p� =
1

n
�
j=0

n−1

��t� − j
�p − �s

n − 1
,�s	 . �15�

The normalization factor 1
n is included in the expression

for the temporal profile so that for any number of individual
subpulses within a compound pulse, the total energy deliv-
ered by the compound pulse remains the same. The factor
��p−�s� / �n−1� describes the time delay between the subse-
quent subpulses of duration �s when n individual subpulses
form a compound pulse of duration �p.

The heat generating function with temporal profile de-
fined by Eq. �15� can be substituted in the derivation for
cylindrical geometry in Appendix A to obtain the tempera-
ture inside a cylindrical target heated by a compound pulse

Tn�r,t� =
u

�c

�c

n�s
�
j=0

n−1

�E1

r2

R2

A

1 + A
�t − j
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n − 1
�

�c

�
− E1


r2

R2

A

1 + A
�t − j

�p − �s

n − 1
− �s�

�c

�� .

The constants � and c are defined following Eq. �1�, the
definition of u precedes Eq. �4�, and E1�s� is the exponential
integral defined in Appendix A. At the center of the cylindri-
cal target, the last expression simplifies to

TnC�t� =
u

�c

�c

n�s
�
j=0

n−1 �ln
 1 + A
�t − j

�p − �s

n − 1
�

�c
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− �s�

�c

�� .

�16a�

The last formula can be rearranged so that instead of a sum
of logarithms, it is expressed as the logarithm of a product

TnC�t� =
u

�c

�c

n�s
ln��

j=0

n−1
 1 + A
�t − j

�p − �s

n − 1
�

�c

1 + A
�t − j

�p − �s

n − 1
− �s�

�c

�� .

�16b�

The expression �16b� allows for easy verification that when
the compound pulse reduces to a single pulse, that is when

�p=n�s, all but the zeroth and the last terms in the product
cancel and Eq. �16b� reduces to Eq. �4� for a single pulse of
duration �p.

The expression for the temperature rise at the center of a
cylindrical target heated by a compound pulse, Eq. �16�, pro-
vides insight into the heating of cylindrical targets by com-
pound pulses. Figure 4 shows the normalized temperature
rise at the center of the target plotted versus normalized time
t /�c. The temperature rise is normalized, so that heating with
a laser pulse that consists of only one pulse of duration �p

=�s=0.5�c, results in a temperature rise equal to 1. In all the
pulse formats illustrated in Fig. 4, the compound pulse dura-
tion is the same, �p=40�c. All the compound pulses shown
deliver the same total energy. The figure illustrates a benefit
of multipulse heating. During the time interval between the
individual subpulses, the target partially cools off and its
peak temperature remains lower than the peak temperature
corresponding to a single short pulse of the same energy. A
single long pulse of duration �p=�s=40�c would result in an
even lower target temperature; however, such pulses may be
impractical for generation with certain types of lasers such as
the pulsed dye laser.

Figure 4 shows a general trend. When the number of
subpulses increases, the peak temperature in the target de-
creases. This is demonstrated in Fig. 5. Here the peak tem-
perature at the end of the pulse, t=�p, is plotted as a function
of the number of subpulses. The curve labeled �c=0.025�p

summarizes the trend observed in Fig. 4. The dashed line
represents the lowest value of the peak temperature that is
achieved when a sufficiently large number n of subpulses is
included, so that n�s=�p and the effect of the compound
pulse approaches that of a single pulse of duration �p. The
rest of the curves apply to targets with larger �c, and there-
fore larger diameters. It becomes clear from Fig. 5 that a key
benefit of compound pulse heating is the possibility to heat
simultaneously using the same laser pulse targets of varying

FIG. 4. Evolution of the temperature rise at the center of a cylindrical target,
Eq. �16�, for various pulse formats. In all cases, the deposited energy density
is the same and the total pulse duration is the same �p=40�r.
diameters and to achieve higher central temperatures in the
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larger targets and lower central temperatures in the smaller
targets. Increasing the number of subpulses is especially ben-
eficial when the characteristic time of the small target �c is
much shorter than the laser pulse duration �p.

Simultaneous heating of targets with varying sizes �and
characteristic times �c� is illustrated on Fig. 6. The larger
targets accumulate the heat from the individual subpulses
more effectively and achieve higher peak temperature than
the temperature in the smaller targets. In the smaller targets
where �c is much shorter than �p ��c=0.025�p�, the heat de-
posited in the target dissipates during the time interval be-
tween individual subpulses and the peak temperature is only
slightly higher than the peak temperature resulting from

FIG. 5. Peak temperature at the center of cylindrical targets, Eq. �16�, with
various diameters, �c=d2 /16�. In all cases, the total pulse duration and the
deposited energy density are the same and the individual subpulse duration
is the same �s=0.0025�p.

FIG. 6. Evolution of the temperature rise at the center of cylindrical targets,
Eq. �16�, with various diameters. In all cases, the individual subpulse dura-

tion is the same �s=0.0025�p.
heating by an individual subpulse. In larger targets where �c

is longer than �p ��c=10�p�, the target accumulates the heat
deposited by individual subpulses and its peak temperature is
only slightly lower than the peak temperature that would be
observed if all the energy were deposited by a single sub-
pulse.

V. VERIFICATION OF THE ANALYTICAL MODEL
USING EXPERIMENTAL RESULTS: APPLICATION TO
THE HEATING OF BLOOD VESSELS

The analytical model presented here predicts the tem-
perature rise that occurs in embedded biological targets as a
function of the tissue characteristics and the specifications of
a heating laser pulse. In most practical cases, the temperature
of the embedded target cannot be measured directly, making
a direct comparison of the model with experimental data
difficult. However, even without temperature measurements,
a comparison is possible using a few simplifying assump-
tions.

The formulas for the temperature rise at the center of
cylindrical targets imply a linear dependence on the depos-
ited energy density u and a nonlinear dependence on the
pulse duration. In most practical applications for cylindrical
target heating, the pulse duration is well known. However,
the energy density deposited in the target u �J /cm3� cannot
be measured directly but only can be calculated approxi-
mately by means of a Monte Carlo scattering model or light
transport formalism. Any approach to the calculation of the
energy density u necessitates a set of assumptions about the
scattering and absorption properties of the skin structures.

In the absence of nonlinear optical effects, the energy
density delivered in the target is directly proportional to the
radiant exposure delivered to the skin. However, the propor-
tionality coefficient can be calculated only approximately.
The approximate calculation of the deposited energy density
u can be avoided by comparing the temperature rise calcu-
lated for various pulse formats with the temperature rise cal-
culated for a pulse format that produces a well-established
tissue effect. That approach contains the implicit assumption
that the most important characteristic for the tissue damage
process is the peak temperature that was achieved. An alter-
native is to use the damage integral formalism that takes into
account the complete temporal dependence of the tempera-
ture rise. However, that involves the calculation of integrals
containing imprecise experimentally measured parameters.
The simpler peak temperature approach is used in the present
work and it will be shown to yield simple and insightful
results.

Clinically, purpura is a side effect often observed in der-
matological treatments involving dye lasers. Purpura mani-
fests as a coagulation of small vessels in the laser treated
area on the skin. Purpura may last a few days to a few weeks
and is an unwelcome transient cosmetic side effect. The ra-
diant exposure level that triggers purpura is a function of
various laser parameters and has been reported in numerous
publications.17,25 The purpura threshold fluence �THF� de-
fined in Ref. 17 is equivalent to the purpura threshold radiant
exposure �PTRE� used in the present work. The radiant ex-

posure is defined as the delivered energy density per unit
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area and characterizes the laser system, while the fluence is
the energy density of the laser beam in the tissue, as defined
in Chapter 2 of Ref. 21. Although there is a clear distinction
between THF and PTRE, typically in clinical publications
purpura threshold fluence is used instead of PTRE.

The purpura observed with dermatological laser applica-
tions provides a suitable tissue effect that can be used to
compare our analytical model with experimental results. The
use of clinical purpura as a benchmark tissue effect is pos-
sible because it is caused by thermal damage to blood vessels
that can be considered as cylindrical targets.17,25 The use of
purpura as an indicator assumes that for any pulse format and
any blood vessel diameter, thermal damage resulting in pur-
pura will occur at the same temperature Tp. The value of Tp

can be estimated from clinical studies, but it is not needed.
Instead, it is assumed that regardless of vessel topology, once
Tp is reached, purpura occurs. This results in a simple but
powerful means of describing clinical data analytically as
will be demonstrated.

VI. COMPARISON WITH CLINICAL DATA USING
SINGLE LASER PULSE FOR HEATING OF BLOOD
VESSELS

The expression describing the peak temperature ob-
served in an embedded cylindrical target as a result of single
pulse heating �12� can be rearranged to solve for the depos-
ited energy density up required to achieve purpura. up is a
function of the purpura threshold temperature Tp and the
laser pulse duration �

up�d,�� = �cTp
�

�c

1

ln�1 + A
�

�c
	 . �17�

In the linear approximation, the energy density deposited
in the target u is proportional to the radiant exposure deliv-
ered on the surface of the skin F. Therefore Eq. �17� can be
used to express the threshold radiant exposure Fp that will
cause clinical purpura

Fp�d,�� = 

�

�c

1

ln�1 + A
�

�c
	 . �18�

The proportionality coefficient 
 is a function of Tp and the
optical and thermal properties of the skin and the target ves-
sel �assumed to be constant�. Equation �18� can be evaluated
for any combination of laser pulse duration and vessel diam-
eter. The results can be compared with existing clinical data
in the literature.

The expression for the PTRE �18� was used to analyze
the expansive set of experimental data on selective vascular
injury resulting from laser irradiation with a 577 nm dye
laser.25 The experimental data points from the study25 are
plotted on Fig. 7 along with their error bars. In that study,
purpura thresholds were determined for laser pulse durations
covering three orders of magnitude. On the same figure, the
solid line represents the least squares fit of Eq. �18� to the
data points. The least squares fit was done with 
 and �c
treated as adjustable parameters. The calculated value for
�c�0.2 ms corresponds to a target diameter d�20 �m. His-
tology has shown that this is a typical diameter for the nor-
mal capillaries damaged in the purpura threshold study.
There is a remarkably good agreement between the theoret-
ical model �the solid line� and the experimental data for all
pulse durations between 20 �s and 360 �s.

The analytical calculation does not fit the experimental
data for the 1.5 �s pulse duration. However, at this short
pulse duration, the histological studies exhibited evidence of
shattered vessels that was probably due to vaporization. The
analytical thermal model presented here does not include the
possibility for a phase change in the target; this may explain
the difference in the calculated and experimental damage
threshold radiant exposure at the 1.5 �s pulse duration.

The normal capillaries damaged in a typical purpura
threshold study have a range of diameters between 10 and
40 �m.25 The analytical model shows a very good fit with
the experimental data when the target diameter is 20 �m.
The model can be expanded to calculate the purpuric thresh-
old for the whole range of 10 to 40 �m. The experimentally
measured purpuric threshold of 3.92 J /cm2 for 360 �s
pulses will be used as reference PTRE, Fpe=3.92 J /cm2, for
the reference pulse duration �pe=360 �s. The reference
20 �m vessels have characteristic time �c20. The purpuric
peak temperature rise Tp is assumed to be the same for any
vessel diameter

Tp�t = �� =
up

�c

�c

�
ln�1 + A

�

�c
	 =

upe

�c

�c20

�pe
ln�1 + A

�pe

�c20
	 .

�19�

In the linear approximation, the energy density deposited in
the target u is proportional to the radiant exposure delivered
on the surface of the skin F. Therefore, the last equation can

FIG. 7. Purpura threshold radiant exposure versus pulse duration. Experi-
mental data points with error bars are from Ref. 25 The solid line is the
theoretical best fit line, Eq. �18�, dashed lines are model calculations, Eq.
�20�. Wavelength=577 nm.
be rewritten for the PTREs Fp and Fpe
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Fp�d,�� = Fpe
�

�c

�c20

�pe

ln�1 + A
�pe

�c20
	

ln�1 + A
�

�c
	 . �20�

The PTREs calculated from Eq. �20� are shown in Fig. 7 as
dashed lines. The calculated plots for the 20 �m vessels
based on Eq. �20�—dashed line and least squares fit of Eq.
�18�—solid line are both in very good agreement with the
experimental data. That agreement confirms the assumption
that the clinical PTREs can be used as a benchmark to apply
the analytical model to clinical experiments. All the calcu-
lated plots show similar PTRE for shorter pulse durations
and progressively larger differences as the pulse duration in-
creases. That would be expected because for shorter pulse
durations, the heat is confined in the vessels and produces
similar temperature raises, coagulation, and purpura. For
longer pulse durations, the heat transfer from the smaller
vessels is faster and that leads to higher purpura thresholds.

VII. COMPARISON WITH CLINICAL DATA USING TWO
LASER SUBPULSES FOR HEATING OF BLOOD
VESSELS

The initial clinical study of blood vessel damage by
compound laser pulses explored a two subpulse treatment of
port-wine stain microvessels.17 Two 585 nm dye lasers were
combined to fire a two subpulse heating pulse. The interval
between the subpulses and their amplitudes were varied.17 In
this study, initially the PTRE was determined for a single
pulse treatment. Next, in the two subpulse treatment, the
leading pulse was set at 80% of the single pulse PTRE, and
the delay and amplitude of the second pulse were varied to
determine the PTRE of the compound pulse as a function of
the delay between subpulses.

The expression for the temperature of embedded cylin-
drical targets due to multi-sub-pulse heating �16a� can be
rewritten to describe two subpulses of unequal energy depo-
sition. The purpuric temperature rise T2p at the end of the
two subpulse compound pulse is

T2p�t = �p� =
1

�c

�c

�s�u1 ln
 1 + A
�p

�c

1 + A
�p − �s

�c

� + u2 ln�1 + A
�s

�c
	� .

�21�

Equation �21� can be written in the notation used in Ref. 17
by substituting the pulse delay �t=�p−�s. The single sub-
pulse temperature rise that would cause purpura, Tp, is ex-
pressed from Eq. �12�

Tp�t = �� =
up

�c

�c

�s
ln�1 + A

�s

�c
	 . �22�

Following the assumption that the purpura threshold tem-
perature rise is the same for any pulse format, Tp=T2p, Eqs.

�21� and �22� are reduced to a single expression
up ln�1 + A
�s

�c
	 = u1 ln
 1 + A

�t + �s

�c

1 + A
�t

�c

� + u2 ln�1 + A
�s

�c
	 .

�23�

In the linear approximation, the energy density deposited in
the target is proportional to the radiant exposure delivered on
the surface of the skin, and Eq. �23� can be written for the
radiant exposures Fp, F1, and F2. In the clinical study,17 the
radiant exposure delivered in the leading subpulse was set to
80% of the PTRE, F1=0.8Fp. The total PTRE delivered by
the dual pulse is FT=F1+F2=0.8Fp+F2. Using Eq. �23�, FT

can be expressed as

FT��t� = Fp�1.8 − 0.8

ln
 1 + A
�t + �s

�c

1 + A
�t

�c

�
ln�1 + A

�s

�c
	 � . �24�

The expression for the total PTRE shows that for any pulse
delay �t, FT cannot exceed 180% of the single pulse purpura
threshold Fp. All the quantities needed to calculate Eq. �24�
are provided in Ref.17, Fp=3.3 J /cm2, �s=0.36 ms, and
blood vessel diameters between 24 and 58 �m with mean
value of 37.5 �m. Figure 8 shows a plot of Eq. �24� for d
=37.5 �m as a solid line. The two dashed lines on the same
plot correspond to the full range of blood vessel diameters
observed in the clinical study. Agreement between the ana-
lytical model and the experimental data is very good over the
entire range of subpulse delay intervals considered in the

FIG. 8. Dual pulse purpura threshold radiant exposure versus pulse delay.
Experimental data points with error bars are from Ref. 17. Solid line is the
theoretical calculation, Eq. �24�, for the mean vessel diameter d=37.5 �m.
Wavelength=585 nm.
study.
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VIII. MULTI SUBPULSE LASER HEATING OF BLOOD
VESSELS

The concept of increasing the PTRE from a single pulse
to two subpulses can be expanded to extended pulse formats
consisting of three or more subpulses. The analytical model
presented here can be applied to calculate the PTRE of such
compound pulses.

The expression for the temperature of embedded cylin-
drical targets due to multi-sub-pulse heating �16� can be re-
written for the purpuric temperature rise Tnp that is reached
at the end of the compound pulse t=�p

Tnp�t = �p�

=
un

�c

�c

n�s
ln��

j=0

n−1
 1 + A
�n − j − 1��p + j�s

�n − 1��c

1 + A
�n − j − 1�

�n − 1�
��p − �s�

�c

�� .

�25�

Here un is the total energy density delivered by the sequence
of n subpulses.

The single pulse temperature rise that would cause pur-
pura by predominant coagulation of 20 �m vessels, Tp, is
expressed from Eq. �12�

Tp�t = �� =
up

�c

�c20

�b
ln�1 + A

�b

�c20
	 . �26�

Here �b is the duration of the single pulse used as a bench-
mark for clinical purpura and �c20 is the characteristic time
for a 20 �m vessel. Following the assumption that the pur-
pura threshold temperature rise is the same for any pulse
format, Tnp=Tp, Eqs. �25� and �26� are reduced to

up
�c20

�b
ln�1 + A

�b

�c20
	

= un
�c

n�s
ln��

j=0

n−1
 1 + A
�n − j − 1��p + j�s

�n − 1��c

1 + A
�n − j − 1�

�n − 1�
��p − �s�

�c

�� . �27�

In the linear skin optic approximation, the energy density
deposited in the target is proportional to the radiant exposure
delivered on the surface of the skin, and Eq. �27� can be
rewritten for the single pulse PTRE Fp and the multipulse
PTRE Fn

Fn�d,�s,�p,n�

= Fp
n�s

�b

�c20

�c

ln�1 + A
�b

�c20
	

ln��
j=0

n−1
 1 + A
�n − j − 1��p + j�s

�n − 1��c

1 + A
�n − j − 1�

�n − 1�
��p − �s�

�c

��
. �28�

Equation �28� suggests that it might be possible to increase
the purpura threshold of a pulsed dye laser by increasing the

number of subpulses. A typical 595 nm dye laser has a single
pulse purpura threshold Fp around 5.2 J /cm2 for �b

=0.45 ms pulses. It is suggested that typically the clinical
purpura is caused by overheating of blood vessels between
10 and 40 �m.25 The compound pulse purpura threshold for
a 595 nm laser with 0.1 ms subpulses is plotted on Fig. 9 as
a function of the number of subpulses. The results suggest
that if the only cause of clinical purpura is overheating of the
small blood vessels then it is possible to build dye lasers with
greatly increased purpura threshold.

IX. EXPERIMENTAL RESULTS FOR PRACTICAL
MULTIPULSE DYE LASERS

The analytical expression for the purpura threshold in-
crease was compared with experimental data using a modi-
fied 595 nm V-Star laser from Cynosure Inc. The laser was
set to produce compound pulses consisting of 3, 4, 5, or 6
equal amplitude subpulses equally spaced over a 40 ms total
pulse duration. The radiant exposure delivered by the com-
pound pulse was verified before and after each exposure.

Twenty-eight patients were involved in the study. Each
patient was exposed to a series of laser pulses. All four laser
pulse formats were investigated using a 7 mm spotsize. Also
a single pulse 0.45 ms laser setting was used to determine
the single pulse purpura threshold. All treatments were done
on normal appearing skin in the buttocks region. Each treat-
ment consisted of a series of 40 ms laser pulses whose radi-
ant exposure was varied in steps of approximately 1 J /cm2

up to the maximum radiant exposure available. One such
series was carried out using each of the four available pulse
formats. Digital photographs were taken at 24 h post treat-
ment. By evaluating the photographs, the purpuric threshold
was defined as the radiant exposure at which any nontran-
sient redness or bruising was evident. A similar study using a
laser with three subpulses has been published.26

The experimental data is plotted in Fig. 10 with the cal-

FIG. 9. Calculated purpura threshold radiant exposure versus number of
subpulses with duration �s=0.1 ms, Eq. �28�. Total pulse duration is fixed
�p=40 ms. Wavelength=595 nm.
culated purpura thresholds using Eq. �28� for 20, 30, and
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40 �m vessels. The calculated points are connected by solid
lines for clarity. There is excellent agreement between the
clinically observed purpura threshold and the calculations for
blood vessels with diameters between 20 and 40 �m. The
trend of increasing purpura threshold with increasing the
number of subpulses is expected to continue as plotted in
Fig. 9, however, the laser available for the study was limited
to no more than six subpulses.

The purpura threshold of the 595 nm dye laser using a
compound pulse consisting of six subpulses was evaluated
also for compound pulse durations of 6 and 10 ms. The ex-
perimental data and the calculations for 20, 30, and 40 �m
vessels are plotted in Fig. 11. The increase in the purpura
threshold with increased pulse duration is evident both in the
experimental data and the calculations.

A separate set of experiments were performed with a
laser operating at 585 nm and delivering compound pulses
consisting of six equally spaced 0.1 ms subpulses in a 7 mm
spot. The purpura threshold tests were done on the buttocks
skin of ten patients who volunteered to participate in the
study. The experimental data and the calculations from Eq.
�28� for the 585 nm laser study are plotted in Fig. 12. There
is good agreement between the experimental data and the
calculations for vessels between 20 and 30 �m. The purpura
thresholds for the 585 nm laser are always lower than the
595 nm laser because of the much higher oxygenated
blood absorption 165 cm−1 at 585 nm versus 36 cm−1 at
595 nm.27,28 In both cases, cooling of the small blood vessels
between subpulses leads to higher purpura threshold for
longer pulses and the analytical model correctly predicts the
increased purpura threshold.

X. DISCUSSION

While the treatment of vascular lesions is a complex and

FIG. 10. Comparison of the theory, Eq. �28�, with experimental data for
purpura threshold radiant exposure versus number of subpulses with dura-
tion �s=0.1 ms. Total pulse duration is fixed �p=40 ms. Wavelength
=595 nm.
daunting problem, theoretical understanding of the use of a
laser to address these indications begins with a thermal pro-
cess analysis based on the tissue properties. It is remarkable
that by means of a few simplifying assumptions, this initial
step can be described by a very tractable and intuitive model.
Often such models are applicable only over a very limited
range of parameters; however, such is not the case here. In
fact the model offers insight into the laser tissue response
over a wide range of wavelengths, laser pulse formats, laser
radiant exposure, and vascular dimensions. The applicability
has been demonstrated by applying the model to the specific
case of the analysis of the onset of purpura. The appearance
of clinical purpura is usually an undesirable cosmetic side

FIG. 11. Comparison of the theory, Eq. �28�, with experimental data for
purpura threshold radiant exposure versus total pulse duration �p. Data is
taken for six equally spaced subpulses with duration �s=0.1 ms each.
Wavelength=595 nm.

FIG. 12. Comparison of the theory, Eq. �28�, with experimental data for
purpura threshold radiant exposure versus total pulse duration �p. Data is
taken for six equally spaced subpulses with duration �s=0.1 ms each.

Wavelength=585 nm.
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effect in dye laser clinical treatments. It has been shown here
that the short term acute purpuric response can be described
by the model resulting in simple formulas for the purpuric
threshold as a function of the laser pulse structure. Clinical
data gathered by the present authors as well as data from
other experiments published over the last 20 years has been
compared to the predictions of the model presented here.
These data span more than three orders of magnitude of
variation in laser parameters including pulse duration and
peak power. In addition, the data include a variation in the
laser wavelength that results in a factor of more than one
order of magnitude in the absorption coefficient of oxyhemo-
globin. In all cases, the predictions of the model are in ex-
cellent agreement with the experimental data.

The results of the application of the present thermal
model to the onset of purpura not only predicts the threshold
radiant exposure that yields purpura, but also yields insight
into the size of the vessels involved in the process. As one
might have anticipated, the model indicates that the shorter
wavelengths �577 and 585 nm, Figs. 7 and 12� have a more
profound effect on the smaller vessels than does the longer
wavelength �Figs. 10 and 11�. This is consistent with the
higher blood absorption at the shorter wavelengths. A more
detailed analysis of that effect will be included in a future
refined theoretical model that will include the target absorp-
tion coefficient. In all cases, purpura is seen to be associated
with the heating of vessels in the range of 20 to 30 �m
diameter, consistent with histological data.25

This model provides a tool to guide the development of
dye lasers. While the present analysis has dealt only with the
comparison of model predictions with the onset of purpura,
the ability to design a dye laser offering reduced risk of
purpura while delivering radiant exposure capable of de-
stroying larger unwanted vasculature is within the capability
of the model. Recent publications22–24 have reported such
improved results, all consistent with the predictions of the
model presented here.

While the work presented here has dealt only with the
specific case of vascular malformation, the model is clearly
applicable anytime the nature of the laser treatment is ther-
mal. This is the case in many applications. One perhaps
unique advantage when investigating vascular treatments is
the existence of a very tractable and quantifiable marker,
specifically the onset of purpura. Application of the model in
cases where no such marker exists may be more difficult to
verify through simple clinical experiments such as the ones
presented here. Still, it is possible to obtain significant in-
sight into these applications.

XI. CONCLUSION

An analytical model for laser pulse heating of embedded
targets has been developed and verified for cylindrical targets
for a wide range of laser absorption coefficients. Clinical
purpura was used as a marker for small blood vessel damage
under the assumption that purpura due to the same tempera-
ture rise in the vessel. Applying the model to experimental
data published in the last 20 years validated the correspon-

dence of small vessel temperature rise and purpuric appear-
ance. The model uses only peak temperature as an indicator
of tissue damage, avoids the calculation of thermal damage
integrals involving empirical factors, and shows excellent
agreement with experimental data for cylindrical targets.
This analytical model leads to the derivation of analytical
expressions that can be used to guide the development of
future laser systems.

APPENDIX A: CYLINDRICAL TARGET GEOMETRY

The heat generation function of the form �3� is written in
cylindrical geometry as

h�r��,t�� = Q��t�,��exp�− A
x�2 + y�2

R2 	 . �A1�

The origin of the coordinate system is positioned in the cen-
ter of the cylindrical target and z� is along the axis. The
spatial portion of the integral in Eq. �2� can be expressed as
a product of integrals over x�, y�, and z�.

T�r�,t� = �
−�

t

dt�Q��t�,��
Ix�t − t��Iy�t − t��Iz�t − t��

8����t − t���3/2 .

�A2�

The initial step is integration over the spatial coordi-
nates. The two integrals over x� and y� are identical, the z�
integral has a different form because the heat generation
function �A1� is independent of z�. The explicit form of the
x� integral is

Ix = �
−�

�

dx� exp�− � �x − x��2

�
	
exp�− A

x�2

R2 	 ,

where �=4��t− t��.
The integral can be simplified to

Ix = exp� �D − 1�x2

�

�

−�

�

dx�exp�− � �x� − Dx�
��D

	2

= ���D exp� �D − 1�x2

�

 , �A3�

where D=R2 / �R2+A��.
The solution �A3� is identical for the y� coordinate.
The explicit form of the z� integral is

Iz = �
−�

�

dz� exp�− � �z − z��2

�
	
 = ��� �A4�

The integrals over x�, y�, and z� are substituted in the origi-
nal integral expression to obtain

T�r,t� =
Q

�c
�

−�

t

dt���t�,��D exp� �D − 1�r2

�

 , �A5�

where r is the radial coordinate in the cylindrical target, r2

=x2+y2. Using the explicit expression for D, the integral

�A5� reduces to
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T�r,t� =
QR2

�c
�

−�

t

dt���t�,��
1

�R2 + A��
exp�−

Ar2

R2 + A�

 .

�A6�

The next step is integration over the temporal coordinate.
The temporal function of the rectangular heating pulse
��t� ,�� produces two expressions for the temperature varia-
tion with different forms during the heating and the cooling
phase.

T�r,t� =�
QR2

�c
�

0

t

dt�
1

�R2 + A��
exp�−

Ar2

R2 + A�

 ,

t 	 � �heating�
QR2

�c
�

0

�

dt�
1

�R2 + A��
exp�−

Ar2

R2 + A�

 ,

t 
 � �cooling�

� .

�A7�

A change of variables based on the definition for � simplifies
the integral �=4��t− t��

T�r,t�

=�
QR2

�c
�

4�t

0 1

�R2 + A��
exp�−

Ar2

R2 + A�

− 1

4�
d� ,

t 	 �

QR2

�c
�

4�t

4��t−�� 1

�R2 + A��
exp�−

Ar2

R2 + A�

− 1

4�
d� ,

t 
 �

� .

�A8�

The integrals can be simplified by the following change of
variables �= Ar2

R2+A�

T�r,t� = �
QR2

�c

1

4�A
�

Ar2/�R2+A4�t�

A�r/R�2 exp�− ��
�

d�, t 	 �

QR2

�c

1

4�A
�

Ar2/�R2+A4�t�

Ar2/�R2+A4��t−��� exp�− ��
�

d�, t 
 �� .

�A9�

The integrals can be expressed in terms of exponential inte-
grals E1�s�

E1�s� = �
s

� exp�− ��
�

d�

= − 
 − ln�s� − �
n=1

�
�− 1�nsn

n ! n
, where 
 = 0.57721.

Then the solution for the temperature distribution in a cylin-

drical target can be expressed as
T�r,t�

=�
QR2

��c

1

4A
�E1� Ar2

R2 + A4�t
	 − E1�A

r2

R2	
, t 	 �

QR2

��c

1

4A
�E1� Ar2

R2 + A4�t
	 − E1� Ar2

R2 + A4��t − ��	
 ,

t 
 �
�

�A10�

For a square pulse in time, the heat generation rate Q
�J /m3s� can be expressed as a ratio of the deposited energy
density q�J /m3� and the pulse duration �, Q=q /�. It is con-
venient to introduce also a characteristic time for the target
�c= R2

4� = d2

16� . The expression for the temperature distribution
�A10� can be rearranged as

T�r,t� =
q

�c

�c

�

1

A�E1
 r2

R2

A

1 + A
t

�c
� − E1
 r2

R2

A

1 + A
�t − ��

�c
�� ,

�A11�

where

�x� = �x, for x � 0

0, for x � 0
�

represents the Macauley bracket or ramp function.
The total amount of energy per unit length delivered to

the target E can be calculated from the expression for the
heat generation rate of a Gaussian heater �3�

E = �
−�

�

dt��
0

2�

d��
0

�

r�dr�
q

�
��t�,��exp�− A

r�2

R2 	
= q

�R2

A
. �A12�

If the same target were heated by a source depositing uni-
form energy density u �J /m3s�, the energy per unit length
delivered to the target would be

Eu = u�R2 �A13�

The expressions �A12� and �A13� for the total energy deliv-
ered to the target can be used to derive a relation between the
uniform energy density u delivered to a target and the peak
energy density in the center of the target q for an equivalent
Gaussian source.

q = Au �A14�

The energy density relationship �A14� can be substituted in
the expression for the temperature variation �A11� to obtain
an approximate formula for the temperature variation in a

uniformly heated cylindrical target.
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T�r,t� =
u

�c

�c

� �E1
 r2

R2

A

1 + A
t

�c
� − E1
 r2

R2

A

1 + A
�t − ��

�c
��

�A15�

For the temperature in the center of the target the expression
�A15� can be simplified using the series expansion for the
exponential integral

TC�t� =
u

�c

�c

�
ln
 1 + A

t

�c

1 + A
�t − ��

�c

� . �A16�

APPENDIX B: SPHERICAL TARGET GEOMETRY

Following the procedure outlined in Appendix A, the
heat generation function of the form �3� is written in spheri-
cal geometry as

h�r��,t�� = Q��t�,��exp�− A
x�2 + y�2 + z�2

R2 	 �B1�

The origin of the coordinate system is positioned in the cen-
ter of the spherical target. The spatial portion of the integral
in Eq. �2� can be expressed as a product of integrals over x�,
y�, and z�.

T�r�,t� = �
−�

t

dt�Q��t�,��
Ix�t − t��Iy�t − t��Iz�t − t��

8����t − t���3/2 �B2�

The initial step is integration over the spatial coordinates.
The three integrals over x�, y�, and z� are identical. Their
explicit form is shown in �A3�. They are substituted in the
original integral expression to obtain

T�r,t� =
QR3

�c
�

−�

t

dt���t�,��
1

�R2 + A��3/2

�exp�−
Ar2

R2 + A�

 , �B3�

where r is the radial coordinate in the spherical target, r2

=x2+y2+z2, � is defined in Appendix A. The next step is
integration over the temporal coordinate. The integral can be
simplified by the following change of variables �
=r�A /�R2+A�

T�r,t�

= �
QR3

�c

1

2�rA3/2�
r�A/�R2+A4�t

�r/R��A

exp�− �2�d�, t 	 �

QR3

�c

1

2�rA3/2�
r�A/�R2+A4�t

r�A/�R2+A4��t−��
exp�− �2�d�, t 
 �� .

�B4�

The formula for the temperature variation in a uniformly

heated spherical target becomes
T�r,t� =
4

3

u

�c

�c

�

R

r �erf
 r

R

�A

�1 + A
�t − ��

�c
�

− erf
 r

R

�A

�1 + A
t

�c
�� . �B5�

For the temperature in the center of the target, the expression
�B5� can be simplified using the mean value theorem for the
integrals in expression �B4�

TC�t� =
u

�c

�c

�

8

3
�A

�� 1

�1 + A
�t − ��

�c

−
1

�1 + A
t

�c
�
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APPENDIX C: PLANAR TARGET GEOMETRY

Following the procedure outlined in Appendix A, the
heat generation functions of the form �3� is written in planar
geometry as

h�r��,t�� = Q��t�,��exp�− A
x�2

R2 	 �C1�

The origin of the coordinate system is positioned in the cen-
ter of the planar target and x� is along the width of the target.
The spatial portion of the integral in Eq. �2� can be expressed
as a product of integrals over x�, y�, and z�.

T�r�,t� = �
−�

t

dt�Q��t�,��
Ix�t − t��Iy�t − t��Iz�t − t��

8����t − t���3/2 . �C2�

The initial step is integration over the spatial coordi-
nates. The integral over x� is solved in Appendix A �A3�. The
two integrals over y� and z� are identical. Their explicit form
is shown in �A4�. They are substituted in the original integral
expression to obtain

T�r,t� =
QR

�c
�

−�

t

dt���t�,��
1

��R2 + A��
exp�−

Ax2

R2 + A�

 ,

�C3�

where � is defined in Appendix A.
The next step is integration over the temporal coordi-

nate. The integrals can be simplified by the following change
of variables �=x�A /�R2+A�

T�r,t�

= �
QR

�c

x

2��A
�

x�A/�R2+A4�t

�x/R��A exp�− �2�
�2 d�, t 	 �

QR

�c

x

2��A
�

x�A/�R2+A4�t

x�A/�R2+A4��t−�� exp�− �2�
�2 d�, t 
 �� .

�C4�

The formula for the temperature variation in a uniformly

heated spherical target becomes
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T�r,t� =
u
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	 − ��erf� x

R
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	 � . �C5�
For the temperature in the center of the target the expression
�C5� can be simplified using the mean value theorem for the
integrals in expression �C4�

TC�t� =
u

�c

�c

�

4
��A

��1 + A
t

�c
−�1 + A

�t − ��
�c


 . �C6�

APPENDIX D: SECOND ORDER CYLINDRICAL
TARGET GEOMETRY

Following the procedure outlined in Appendix A, for the
heat generation function of the form �11�, the spatial portion
of the integral in Eq. �2� can be expressed as a product of
integrals of x�, y�, and z�. The initial step is integration over
the spatial coordinates

T�r�,t� = �
−�

t

dt�Q��t,��
Ixy�t − t��Iz�t − t��
8����t − t���3/2 , �D1�

where the Ixy integral is defined as

Ixy = �
−�

�

dy��Ix1�t − t�� +
y�2

R2 Ix�t − t��

�exp�− � �y − y��2

�
	
exp�− A

y�2

R2 	 .

The integral Ix is solved in Appendix A �A3�. The explicit
form of the Ix1 integral is

Ix1 = �
−�

�

dx�
x�2

R2 exp�− � �x − x��2

�
	
exp�− A

x�2

R2 	
= exp� �D − 1�x2

�

���D

D

R2��

2
+ Dx2
 ,

where � is defined in Appendix A.
The solution for the Ix and Ix1 are substituted in the Ixy

integral.

Ixy = exp� �D − 1�x2

�

���D�

−�

�

dy�� D

R2��

2
+ Dx2	

+
y�2

R2 
exp�− � �y − y��2

�
	
exp�− A

y�2

R2 	
The Ixy integral can be done as a sum of two integrals Iy1 and
Iy2. Where the integral Iy1 is similar to Ix and Iy2 is similar to

Ix1. The result is
Ixy = exp� �D − 1��x2 + y2�
�


��D2

R2 �� + D�x2 + y2�� .

The integral over z� is identical to the z� integral in Appendix
A �A4�.

The integrals Ixy and Iz can be substituted in the original
integral expression �D1� to obtain

T�r,t� =
QR2

�c
�

−�

t

dt�����
1

�R2 + A��2�� +
R2r2

R2 + A�



�exp�−
Ar2
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The next step is integration over the temporal coordinate.
The integral can be simplified by the following change of
variables �=Ar2 / �R2+A��

T�r,t� =�
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Then the second order solution for the temperature distribu-
tion in a cylindrical target can be expressed as
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=
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